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ABSTRACT: The ratio of snowfall to total precipitation (S/P ratio) is an important metric that is widely used to detect
and monitor hydrologic responses to climate change over mountainous areas. Changes in the S/P ratio over time have
proved to be reliable indicators of climatic warming. In this study, the seasonality and interannual variability of
monthly S/P ratios over High Mountain Asia (HMA) have been examined during the period 1950–2014 based on a
three-member ensemble of simulations using the latest GFDL AM4 model. The results show a significant decreasing
trend in S/P ratios during the analysis period, which has mainly resulted from reductions in snowfall, with increases in
total precipitation playing a secondary role. Significant regime shifts in S/P ratios are detected around the mid-1990s,
with rainfall becoming the dominant form of precipitation over HMA after the changepoints. Attribution analysis
demonstrates that increases in rainfall during recent decades were primarily caused by a transformation of snowfall to
rainfall as temperature warmed. A logistic equation is used to explore the relationship between the S/P ratio and sur-
face temperature, allowing calculation of a threshold temperature at which the S/P ratio equals 50% (i.e., precipitation
is equally likely to take the form of rainfall or snowfall). These temperature thresholds are higher over higher elevations.
This study provides an extensive evaluation of simulated S/P ratios over the HMA that helps clarify the seasonality and in-
terannual variability of this metric over the past several decades. The results have important socioeconomic and environ-
mental implications, particularly with respect to water management in Asia under climate change.
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1. Introduction

High Mountain Asia (HMA) is an elevated geographic re-
gion extending from the Himalayas in the south and east to
the Hindu Kush in the west and the Tien Shan in the north
(Fig. 1). It includes many of the most prominent Asian moun-
tain ranges stretching across the Tibetan Plateau. These tow-
ering peaks are home to a great diversity of wildlife and a
unique high-altitude ecosystem. Moreover, these mountains
hold the world’s largest reservoir of perennial glaciers and
snow outside of the polar regions, and act as an important
buffer in the hydrological system (Xu et al. 2008; Yao et al.
2012; Yang et al. 2014; IPCC 2019). Over one-sixth of the
global population lives downstream of these reservoirs. Their
livelihood depends heavily on rivers with headwaters in HMA,
which provide water for irrigation, hydropower, and many
other purposes. However, rapid population growth and indus-
trialization in the surrounding nations, in tandem with climate

change, are exerting increased pressure on water resources in
this region.

Precipitation is the ultimate source of water supplies in
these mountainous areas. Replenishment via precipitation has
great impacts on glacier mass balance, river discharge, plant
phenology, and natural hazards (Yao et al. 2012; Lutz et al.
2014; Maussion et al. 2014; Mölg et al. 2014). Numerous stud-
ies have analyzed variations of precipitation amounts over
HMA. An overall wetting trend has been reported over the
Tibetan Plateau during the past several decades, but with sub-
stantial regional and seasonal disparities (Yang et al. 2011;
Maussion et al. 2014; Wang et al. 2018). Significant decreasing
trends in summer rainfall over the southwestern Tibetan
Plateau have been noted during the second half of the last
century (Dong et al. 2016), which are linked to changes in
the occurrence and characteristics of low pressure systems
over the Indian subcontinent (Dong et al. 2017, 2020). Simi-
larly, Wang and Yin (2019) found a significant drying trend
over the arid and semiarid regions of the Tibetan Plateau
during 1990–2014 based on a self-organizing map analysis.
Over the Qilian Mountains, no significant trends were de-
tected in annual precipitation during 1961–2010 (Tian et al.
2014); however, warm season rainfall over the Tien Shan
mountain range has decreased in contrast to that over the
adjacent basin regions during the past two decades (Dong
et al. 2018a). In addition to the amount of precipitation,
which is the main determinant of variations in total avail-
able water resources, the phase of precipitation (i.e., snow-
fall vs rainfall) could also play a critical role in modulating
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climate in mountainous regions (Guo and Li 2015; Deng
et al. 2017; Zhu et al. 2017; Jennings et al. 2018). Snowfall
and rainfall have distinct effects on land surface water and
energy fluxes. Snowfall stores a portion of the wintertime
precipitation into the summer months, helping to buffer the
hydrological system, while rainfall infiltrates soils relatively
quickly before converging into nearby rivers or groundwa-
ter. The presence of snow also increases the surface albedo,
resulting in regional cooling over snow-covered regions. By
contrast, albedo often decreases when precipitation occurs
in the form of rainfall as wet lands are usually darker and
have a lower albedo (Levine and Boos 2017).

The hydrologic cycle is expected to intensify over HMA as
climate warms (Yang et al. 2011, 2014). More intense rainfall
and earlier snowfall events have been observed over this re-
gion (Dong et al. 2018b; Ding et al. 2019). Moreover, warm
temperatures have reduced the proportional amount of snow-
fall versus rainfall worldwide, a trend that is expected to ac-
celerate over the next several decades (Knowles et al. 2006;
Wang et al. 2016; Jennings et al. 2018). In this context, both
the amount and phase of precipitation are likely to change as
climate continues to warm. These changes have socioeconomic
and environmental consequences at scales ranging from local
to continental, reducing the length of the snowy season and

resulting in earlier snowmelt. As a result, glaciers are melting,
snow cover and permafrost are disappearing, and water avail-
ability is changing in a chain of events over HMA, placing local
and downstream communities and ecosystems at progressively
greater risks of both short-term flooding and long-term water
shortages. Much of the work assessing changes in precipitation
over mountainous areas has focused on the ratio of snowfall to
total precipitation (S/P), a hydrologic indicator that is sensitive
to climate variability and widely used to detect and monitor hy-
drologic responses to climate change (Huntington et al. 2004;
Knowles et al. 2006; Feng and Hu 2007). Changes in S/P ratios
over time could influence the magnitude and timing of spring
runoff and its contributions to the summer base flow (Huntington
et al. 2004; Knowles et al. 2006; Feng and Hu 2007).

Increases in temperature and decreases in snowfall have
been observed in many studies focusing on HMA (Immerzeel
et al. 2015; Bibi et al. 2018). These changes could modify the
S/P ratio dramatically. A detailed spatial assessment of changes
in S/P ratios within this region is thus urgently needed. A few
studies have assessed changes in these regions over different
patches of HMA, mainly using station records. Based on
daily precipitation and temperature records, Wang et al.
(2016) reported a decreasing trend in the S/P ratio over the
eastern Tibetan Plateau. A similar conclusion was drawn by

FIG. 1. Topography in the High Mountain Asia (HMA) region based on the ETOPO1 global
relief model. Topography used in C192AM4 is shown in Fig. S1 in the online supplemental
material. Glaciers over HMA are drawn in white based on the GLIMS Glacier Database (Raup
et al. 2007) provided by the National Snow and Ice Data Center. Major rivers are drawn in
thicker blue lines with tributaries in thinner blue lines. Geographical locations mentioned in the
text are indicated. Four regions of interest are bounded by the black dashed rectangles: the Tien
Shan (region 1), the Karakoram (region 2), the northern Tibetan Plateau (region 3), and the
southern Tibetan Plateau (region 4).
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Zhu et al. (2017), who investigated S/P ratios over permafrost
and seasonal frozen ground regions of the plateau using sta-
tion records. A downward trend in S/P ratios during the cold
season has also been identified over the Tien Shan during
1961–2010 (Guo and Li 2015). Li et al. (2018) revealed oppos-
ing trends in S/P ratios over low-elevation and high-elevation
regions of northwestern China during 1979–2015 based on
regional model simulations. Such a disparity was attributed
to different changes in snowfall and precipitation as climate
warms. However, most of these studies are confined to the
limited numbers and sampling domains of meteorological
stations in these regions, and several aspects of the results re-
main controversial. This lack of consensus is aggravated by a
lack of observational data with sufficient spatial and temporal
coverage. While this is due to a general lack of data record-
ing precipitation phase, studies based on remotely sensed
data usually have used the temperature threshold or other
temperature-related methods to estimate snowfall assuming
its occurrence probability (Wang et al. 2016; Deng et al. 2017;
Li et al. 2018). However, Jennings et al. (2018) found signifi-
cant spatial variations in rain–snow temperature thresholds
over HMA. These variations may partially explain the lack of
a spatially uniform response to climate forcing within the
HMA cryosphere (Yao et al. 2012; Kapnick et al. 2014; Mölg
et al. 2014).

Here, we approach this problem using a combination of
station-based observations, regional model outputs, and a
unique multimember ensemble of GCM simulations performed
at NOAA GFDL. Application of atmospheric models with
parameterized microphysics schemes has been shown to be
a more reliable option for predicting the phase of precipita-
tion than temperature threshold methods (Ikeda et al. 2010;
Harpold et al. 2017; Jennings et al. 2018). GFDL models
have previously been used to study the hydroclimate over
HMA. Kapnick et al. (2014) used the GFDL CM2.5 model
(Delworth et al. 2012) to investigate the sensitivity of snow-
fall to warming over the Karakoram range, and showed that
the model simulated the hydroclimate of this region well.
Based on these model simulations, they found that local me-
teorological conditions are important factors behind regional
differences in how glaciers respond to climate warming. In this
study, we use high-resolution simulations (∼50 km) from the
latest GFDL AM4 model (Zhao et al. 2018a,b). We focus on
elucidating how the S/P ratio has changed over the HMA dur-
ing the past 65 years (1950–2014). The data, methods, and
model are introduced in section 2. The results are described in
section 3. Extensive validation of the model simulation is con-
ducted in sections 3a and 3b via comparisons with observations
and regional model outputs. A detailed analysis of the S/P ra-
tio, including trend and regime shift analyses in different sea-
sons and at different elevations, is then presented in section 3c.
The individual contributions of changes in snowfall and to-
tal precipitation to changes in the S/P ratios are evaluated in
section 3d, followed by a logistic analysis of the relationship
between the S/P ratio and surface temperature in section 3e.
An attribution analysis of the contributions of local temper-
ature relative to large-scale circulation to changes in rainfall

is presented and discussed in section 3f. The conclusions are
given in section 4.

2. Data and method

a. Gridded observational data

The Asian Precipitation–Highly Resolved Observational
Data Integration Toward Evaluation of Water Resources
(APHRODITE) project monthly total precipitation and sur-
face temperature products at 0.258 resolution are used as ob-
servational benchmarks in this study. This product uses most
of the available rain gauge observation network across Asia,
and is the only long-term continental-scale product containing
a dense network of daily gauge-based data for Asia that in-
cludes most of the high-altitude areas. For regions with sparse
observational stations, it employs a Sheremap-type scheme
using angular distance weights for interpolation (Yatagai et al.
2012). This interpolation method has been shown to yield bet-
ter representation of orographic features. The latest version
of APHRODITE products covering the period 1998–2014 is
adopted in this study (V1808 for surface temperature and
V1801R1 for precipitation). These products have been im-
proved from previous versions, especially with regard to
the representation of extreme precipitation events. More
details about APHRODITE data products are available at
www.chikyu.ac.jp/precip.

Regional climate model experiments, although typically
limited in duration due to the computational expense in-
volved, have been used to reproduce regional hydroclimate in
many regions around the world. The High Asia Refined anal-
ysis (HAR), generated using a configuration of the WRF
model following a dynamical downscaling method and a daily
reinitialization strategy [see Maussion et al. (2014) for details],
is used as an alternative reference for model validation in this
study. HAR products are provided for the period 2000–14 for
two different spatial domains at two different resolutions. We
use the relatively coarse 30-km gridded dataset, which in-
cludes most mountain ranges in southern and central Asia.
The HAR precipitation (both rainfall and snowfall) and tem-
perature datasets have been widely used and validated against
available station and in situ campaign measurements in a vari-
ety of studies focusing on hydroclimate within HMA. Results
have shown that the HAR dataset is able to reproduce both
liquid and frozen precipitation well (Mölg and Scherer 2012;
Maussion et al. 2014; Mölg et al. 2014; Dong et al. 2016,
2018b).

b. Description of the GFDL C192AM4 model

We use outputs from the latest atmospheric GCM devel-
oped by GFDL, AM4. The AM4 model serves as the atmo-
spheric component for the CMIP6-era GFDL coupled climate
and Earth system models (Zhao et al. 2018a,b; Held et al.
2019; Dunne et al. 2020). As with the default AM4, these
high-resolution simulations [referred to as C192AM4; see
details in Zhao (2020)] are performed with a few tuning
strategies. C192 here denotes the cubed-sphere topology
with 192 3 192 grid boxes per cube face, which yields a
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grid spacing of approximately 50 km. The model grid has
33 vertical levels with more emphasis on troposphere com-
pared to the stratosphere. The model top is located at 1 hPa.
For the AMIP-mode simulations examined in this work, the
model is driven by time-varying boundary conditions, as
well as natural and anthropogenic forcings developed for
CMIP6 experiments (Eyring et al. 2016; archived at https://
esgf-node.llnl.gov/projects/input4mips/). The performance of
the model in simulating the spatial distribution of meteorologi-
cal fields such as winds, temperature, humidity, clouds, atmo-
spheric tracers, and energy fluxes in AMIP mode has already
been assessed in great detail via comparisons with both
CMIP5 AMIP simulations and past GFDL model simulations
(Zhao et al. 2018a,b). The new version of the model adopted
here performs well overall in comparison with previous
GFDL models (Zhao 2020). The comparison with the CMIP5
model is also favorable, indicating improvements even rela-
tive to the best-performing CMIP5 models (Zhao et al. 2018a).
It has also been used to assess various important weather phe-
nomena associated with precipitation, such as atmospheric riv-
ers, tropical storms, and mesoscale convective systems (Dong
et al. 2021; Zhao 2020, 2022). It is found that the mean distri-
bution of the atmospheric river and mesoscale convective sys-
tems as well as the associate precipitation are reasonably
simulated by this model over HMA. Monthly mean outputs
covering the period of 1950–2014, including surface tempera-
ture, total precipitation, snowfall, and rainfall, taken from a
three-member ensemble generated using slightly different ini-
tial conditions, are used in this study.

c. Selection of study area

Interannual variability in S/P ratios is assessed both for dif-
ferent seasons and for different elevations. To account for the
geographic complexity of the HMA region, we separate it into
four subregions (black dashed rectangles in Fig. 1): region 1,
the Tien Shan mountain ranges; region 2, the Karakoram re-
gion as defined by Kapnick et al. (2014); region 3, the north-
ern Tibetan Plateau; and region 4, the southern Tibetan
Plateau. These regions are selected due to their distinctive
features as reported in previous work. For example, hydrocli-
matic changes over the Tien Shan mountain ranges are dis-
tinct from those in surrounding regions (Dong et al. 2018a),
while region 2 features the so-called Karakoram anomaly, in
which glacier mass has increased during recent decades even
as most glaciers within HMA have melted under widespread
warming. The Karakoram anomaly has been attributed to both
unique regional atmospheric circulation variability (Forsythe
et al. 2017) and local meteorological forcing (Kapnick et al.
2014). Regions 3 and 4 are separated by the parallel at 358N,
which approximates the natural boundary between the two
dominant large-scale circulation regimes in this region, namely
the midlatitude westerly jet and the Asian monsoon (Tian et al.
2001; Yao et al. 2012; Dong et al. 2017).

d. Statistical analysis

Trends in the S/P ratio and other meteorological factors are
calculated using the robust Theil–Sen estimator (Theil 1950;

Sen 1968). This method is designed to reduce the effects of
outliers and end points in linear trend analysis. A regime-shift
detection method, namely the changepoint analysis, is applied
to probe the possibility of abrupt changes in the variables
(Chen and Gupta 2012). This method has been widely used to
detect abrupt shifts in climate time series (e.g., mean, variance,
or trend). It calculates the timing and number of changepoints
in a time series. Differences are evaluated using the two-tailed
Student’s t test. Climate shifts and differences are reported
only if they are found to be statistically significant at the
95% confidence level.

e. S/P ratio trend analysis

We compare the respective contributions of trends in rain-
fall and snowfall to trends in S/P ratios. By definition, an S/P
ratio trend can be written as

S
P

( )′
� S′P 2 SP′

P2 , (1)

where S and P denote snowfall and total precipitation, respec-
tively, and the prime indicates the trend based on the Theil–
Sen estimator. Via algebraic manipulation of Eq. (1), we have

S
P

( )′
� S
P
[(lnS)′ 2 (lnP)′], (2)

where lnS and lnP indicate the logarithms of snowfall and to-
tal precipitation, respectively. The sign of the S/P ratio trend
is thus determined by the relative magnitudes of trends in the
logarithms of snowfall and total precipitation rather than the
trends in snowfall and precipitation directly.

f. Regression analysis between the S/P ratio and surface
temperature

Although other parameters matter (such as relative humid-
ity and surface wind), whether falling precipitation takes the
solid or liquid form depends in large part on the surface air
temperature (Legates and Bogart 2009; Deng et al. 2017). This
relationship serves as the rationale for using surface air tem-
perature to distinguish different precipitation types, as applied
in many studies. Various relationships between the S/P ratio
and surface air temperature have been proposed. Among these,
the logistic curve has been shown to yield the best fit to obser-
vational data (Førland and Hanssen-Bauer 2000; Legates and
Bogart 2009; Krasting et al. 2013). This fit follows the form

f (Ta) �
1

1 1 a bTa
, (3)

where f (Ta) is the S/P ratio at a surface air temperature of Ta

(units: 8C) and the parameters a and b are fitting constants.
The slope of this relationship is always negative, indicating
that increases in temperatures lead to lower values of f (Ta)
or, equivalently, an increased fraction of total precipitation fall-
ing in liquid form as climate warms. Mean values of a = 1.61
and b = 1.35 have been empirically derived to fit monthly
mean S/P ratios to observed surface air temperatures based on
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various datasets sampled in the Northern Hemisphere (Rawlins
et al. 2006; Krasting et al. 2013; Bintanja 2018). In this study, we
use the logistic form to fit S/P ratios to surface air temperatures
in HMA and derive the corresponding constants a and b for
this region. Absolute mean errors are also reported for each fit.

g. Attribution analysis of the rainfall-dominant HMA

As indicated by Eq. (3), a warming climate will increase the
fraction of total precipitation falling as rainfall. In other words,
we expect precipitation in HMA to become increasingly domi-
nated by rainfall as climate warms. However, increases in rain-
fall may arise either from temperature changes (i.e., the part of
rainfall that is transformed from snowfall) or from changes in
total precipitation (i.e., the part related to changes in the large-
scale circulation). We therefore conduct an attribution analysis
to probe the relative importance of changes in the large-scale
circulation (related to total precipitation) and changes in local
temperature (related to the transformation of snowfall to rain-
fall) to changes in rainfall amount. We select two periods that
follow from the climate regime changepoint analysis. We then
calculate the relative changes of snowfall, rainfall, and total pre-
cipitation during these two periods:

DP � P1 2 P2

DS � S1 2 S2
DR � R1 2 R2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (4)

where R is liquid precipitation (i.e., rainfall) and the subscripts
1 and 2 correspond to the two different periods. Substituting
f = S/P and DP = DR1 DS into Eq. (4), we derive expressions
for DS and DR in terms of changes in temperature and total
precipitation:

DS � P2Df 1 f1DP

DR � 2P2Df 1 (1 2 f1)DP
:

{
(5)

This method has been applied in several previous studies
(Krasting et al. 2013; Bintanja 2018). Here, we focus solely on
changes in rainfall in the context of climatic warming over
HMA. We therefore define 2P2Df as the component of
changes in rainfall that we attribute to temperature changes
(i.e., the part of snowfall that is transformed into rainfall due
to changes in temperature) and (1 2 f1)DP as the component
related to changes in total precipitation.

3. Results

a. Mean HMA climate simulated by C192AM4

We start with an overall assessment of the climatological
features over HMA from C192AM4 model simulations.
Figures 2a–f show long-term means and linear trends of total
precipitation, snowfall, and surface air temperature during the
1950–2014 study period. The model results presented through-
out this study are based on the average of the three ensemble
members unless otherwise stated. The total precipitation shows
a southeast-to-northwest gradient across HMA, consistent
with the distribution of moisture transport (Yao et al. 2012).

A center of enhanced precipitation linked to orographic
uplift is found over the southern periphery of the Tibetan
Plateau (Fig. 2a). By contrast, the distribution of snowfall
shows large values mainly over higher elevations (Fig. 2b)
and corresponds well to the locations of major glaciers
shown in Fig. 1. When categorized into different elevation
bins, the average total precipitation peaks in the 3500–4000-m
altitude range while the average snowfall peaks in the
higher 4000–4500-m altitude range (Figs. 2g,h). The long-
term mean temperature distribution depends primarily on
the underlying surface elevation, with an average lapse rate
of about 3.468C km21 (Figs. 2c,i).

Linear trends in these variables are calculated using the
Theil–Sen estimator applied to the entire 65-yr period.
Replacing the ensemble mean with each member yields
similar results. For total precipitation, positive trends are
simulated over large parts of the central TP, with signifi-
cant changes noted over the southeastern corner of the TP
(Fig. 2d). This increasing trend has been linked to an inten-
sification of moisture transport through the Brahmaputra
Valley (Song et al. 2011). Meanwhile, significant decreases
in total precipitation are simulated over the eastern periph-
ery of the TP, in good agreement with station records in this
area (Cuo et al. 2013; Zhang et al. 2019). We find a greater
tendency toward positive precipitation trends at higher ele-
vations (Fig. 2g). The spatial distribution of trends in snow-
fall (Fig. 2e) differs substantially from that for trends in
total precipitation. Most parts of HMA show decreasing
trends in snowfall, with only a few high-elevation regions
(such as the Nyainqentanglha Range and the Karakoram re-
gion) showing insignificant increasing trends. We generally
find stronger negative trends in snowfall at higher altitudes;
however, this relationship is not monotonic, especially at
the highest altitudes (Fig. 2h). The resulting “boomerang”
shape in snowfall trends with altitude is in accordance with
the results of Deng et al. (2017) based on station records. By
contrast, warming in surface air temperatures is fairly uni-
form across HMA. Temperature trends indicate warming at
a rate of about 0.158C decade21 (P , 0.01) when averaged
over the whole of HMA, which is larger than the global av-
erage during this period (Yang et al. 2014; Ma et al. 2017).
But the simulated warming rate is much smaller than that
based on the station records, which shows an average rate
of 0.38C decade21 with a likely range of 60.28C decade21

(Wang et al. 2008; IPCC 2019). This may be subject to the
coarse resolution of the model, which fails to fully resolve
the distribution of temperature with sharp gradient over the
complex terrain. An additional elevation-dependent warm-
ing (i.e., the enhancement of warming rates with elevation)
of about 5% with respect to the mean warming rate per kilo-
meter is simulated within HMA, which is again in good
agreement with previous reports (Liu and Chen 2000; Yao
et al. 2000; Pepin et al. 2015).

b. Comparisons with HAR and APHRODITE

As shown above, the mean climate simulated by the
C192AM4 model is broadly consistent with previous studies
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based mainly on station records. However, the relatively
sparse coverage of station data within the HMA domain
makes it difficult to provide a comprehensive description
of the hydroclimate. Therefore, in this section, we further
evaluate the C192AM4 simulation by comparing it with cli-
matic data from HAR and APHRODITE.

The 3-month seasonal means of total precipitation, snow-
fall, and surface air temperature over the four subregions of
HMA are shown in Fig. 3. The use of 3-month seasonal means
instead of individual months is to facilitate a comparison with
previous studies, which usually focus on one or more specific
season(s). However, we should point out that the conclusions
are not affected if the value from each month is present. For
total precipitation, the C192AM4 simulations are in good
agreement with the HAR dataset over the Karakoram and
northern Tibetan Plateau regions, but they differ over the

southern Tibetan Plateau and the Tien Shan mountain ranges.
The poor agreement in region 1 between C192AM4 and
HAR may be associated with different seasonal cycles of pre-
cipitation over high and low elevations, given the geographic
complexity of the Tien Shan region. As shown in Fig. S1 in
the online supplemental material, the underlying orography
in this subregion differs substantially between C192AM4 and
HAR due to their different horizontal resolutions. The larger
bias over the southern Tibetan Plateau in C192AM4, espe-
cially during summertime, might be linked to the influence of
the Indian summer monsoon, which is found to be stronger in
the model (Dong et al. 2020). Besides, the coarse resolution
of the model also leads to excessive atmospheric water va-
por transport into this region (Lin et al. 2018). GCMs often
overestimate dynamical orographic precipitation, as docu-
mented in previous lower-resolution CMIP5 modeling work

FIG. 2. C192AM4 simulated climate features over the High Mountain Asia. (left) Long-term means of simulated (a) total precipitation,
(b) snow water equivalent, and (c) surface temperature averaged over 1950–2014. (center) Linear trends in (d) total precipitation,
(e) snow water equivalent, and (f) surface temperature during 1950–2014. Dots in (d)–(f) indicate trends that are statistically significant at
the 95% confidence level. (right) Long-term means (blue filled markers; left y axis) and linear trends (black bull’s-eye markers;
right y axis) of (g) total precipitation, (h) snow water equivalent, and (i) surface temperature binned by elevation into 500-m intervals
from 2000 to 5000 m above mean sea level. Note the different y-axis scales in (g)–(i).
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(Su et al. 2013). The relatively smaller values based on
APHRODITE data in all four subregions imply that al-
though the new version product better captures extreme
precipitation events, it may not capture the seasonal cycle
well in these high-altitude locations when the station density
is low. For instance, APHRODITE underestimates the win-
tertime maximum in total precipitation over the Karakoram
region (Fig. 3b). This shortcoming has previously been pointed
out by Kapnick et al. (2014) based on in situ observation, who
attributed it to the limited coverage of station records in this re-
gion. This has been further confirmed by Li et al. (2020) using
observation-based gridded data, satellite products, reanalysis
data, and regional climate model outputs.

Despite some quantitative differences, the seasonality of
snowfall simulated by the C192AM4 agrees well with the
HAR product in all four subregions (Figs. 3e–h). As with total
precipitation, snowfall is smaller in C192AM4 than in HAR
in region 1 and larger in C192AM4 than in HAR in region 4.
The wintertime maximum in total precipitation in region 2
can be attributed largely to wintertime snowfall (Fig. 3f). The
dominance of wintertime precipitation helps maintain the
unique hydroclimate of the Karakoram region (Kapnick et al.
2014; Forsythe et al. 2017). The seasonality of the S/P ratio
over all four subregions is characterized by larger values in win-
ter and smaller values in summer (Figs. 3i–l). Also, the mean
seasonal cycle is stronger in HAR compared to C192AM4. The

FIG. 3. (a)–(d) Three-month seasonal mean of total precipitation over regions 1 to 4. (e)–(h) As in (a)–(d), but for snow water equiva-
lent. (i)–(l) As in (a)–(d), but for the S/P ratio. (m)–(p) As in (a)–(d), but for surface air temperature. Blue lines show results from the
C192AM4 simulations (1950–2014), while brown and green lines show estimates from HAR (2000–14) and APHRODITE (1998–2014).
The blue shading indicates the61 standard deviation of the three model ensembles. Similar results are obtained if C192AM4 datasets are
restricted to the continuous period of 1998–2014.
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large total precipitation in HAR relative to the C192AM4 in re-
gion 1 is not mirrored in the S/P ratio, indicating that such an
overestimation is mainly caused by larger snowfall in HAR.
Similarly, the larger total precipitation simulated by C192AM4
in region 4 is also primarily a result of relatively large snowfall
in the model. For surface air temperature, elevation errors
manifest as a summertime warm bias in C192AM4 relative
to HAR (Figs. 3m–p). The greatest difference is found for
region 1 (the Tien Shan mountain ranges), where elevation
errors are most pronounced as mentioned above (Fig. S1).
The APHRODITE dataset also shows a year-round warm
bias of approximately 58C over the Karakoram (region 2)
compared to C192AM4 and HAR. This warm bias in temper-
ature helps explain the low bias in total precipitation over
the Karakoram in APHRODITE (Fig. 3b). This product is
known to underestimate precipitation in regions where fro-
zen precipitation occurs and at high elevations where there are
few meteorological stations (Yatagai et al. 2012). Therefore,
even if total precipitation is very similar across different prod-
ucts, differences in temperature could affect the partitioning of
precipitation into snowfall and rainfall.

c. Characteristics of the S/P ratio

The preceding comparisons demonstrate that, in the ab-
sence of continuous observations with broad spatial coverage,

the C192AM4 simulations provide a credible proxy for explor-
ing hydroclimatic variations over HMA. In this section, we ex-
plore the characteristics of simulated S/P ratios within HMA
based mainly on the three-member ensemble of C192AM4
simulations. We also compare the model results with a com-
panion analysis based on HAR data.

The C192AM4 simulations produce broadly similar spatial
distributions and seasonal cycles of S/P ratios as indicated by
HAR (Figs. 4a,b,d). C192AM4 consistently overestimates the
mean value by about 10% with respect to the HAR dataset.
This overestimation is most pronounced in the interior of
Tibetan Plateau, and also increases with increasing surface
elevation. Differences in the mean S/P ratio are within 5%
below the 4000–4500-m interval but rise to more than 15%
above this interval (Fig. 4e). Such an overestimation is mainly
attributed to the relatively larger portion of snowfall in
C192AM4 with respect to the HAR dataset. This is also evident
in Fig. 3 (last row) given that grids higher than 4500 m are
mainly distributed in region 4. Interestingly, the difference be-
tween C192AM4 and HAR is larger in warm seasons, which
calls for a close investigation of the partitioning of rain and snow
in both models. Figure 4c shows linear trends in S/P ratios dur-
ing the 1950–2014 period as simulated by C192AM4. Significant
decreasing trends are simulated across almost all of HMA, with
only a small patch of positive trends along the eastern periphery

FIG. 4. Long-term mean S/P ratios averaged over 2000–14 based on (a) three C192AM4 ensemble members and (b) the HAR
dataset over the HMA domain. (c) Linear trends in S/P ratios from the C192AM4 simulations for 1950–2014. Dots indicate
trends that are statistically significant at the 95% confidence level. (d) Three-month seasonal means of S/P ratios averaged over
2000–14 from the three C192AM4 ensemble members (blue) and HAR (brown) over the HMA domain. Blue shading indicates
the standard deviation of the three ensembles. (e) Box-and-whisker plot of mean S/P ratios binned by elevation into 500-m inter-
vals between 2000 and 5000 m above mean sea level. Boxes indicate the 10th percentile (lower whisker), 25th percentile (lower
box edge), median (horizontal line), 75th percentile (upper box edge), and 90th percentile (upper whisker), respectively, as well
as the mean (black dot).
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of the TP. The increasing trend in S/P ratios over the eastern
edge of the TP results primarily from the substantial decline in
total precipitation shown in Fig. 2d. We return to this topic in
the following section.

Figure 5 illustrates how the seasonal cycles of S/P ratios
contribute to annual trends across the four subregions. Signifi-
cant decreasing trends are noted across all subregions during
summer months with sporadic and relatively weak positive
signals during spring or winter months. Over the Tien Shan
mountain range, S/P ratios show decreasing trends year-round
with the exception of an insignificant increasing trend cen-
tered in November. Changes in S/P ratios are quite similar
over the northern and southern portions of the Tibetan
Plateau, with decreasing trends during the warm season, and a
few weak increasing trends simulated during the cold season
from December to March. Compared to the other three re-
gions, the Karakoram region shows a shorter duration of de-
creasing trends within the annual cycle. Moreover, this region

shows increasing trends in S/P ratios between December and
March, during the season when snow constitutes the largest
portion of total precipitation. This is consistent with observed
increases in glacier mass within the Karakoram region during
recent decades (Kapnick et al. 2014; Immerzeel et al. 2015;
Forsythe et al. 2017).

As indicated by the shifts from warm to cold colors in Fig. 5,
negative anomalies start to emerge around the middle of the
1990s. We apply the climate changepoint detection algorithm
to more objectively identify any robust regime shifts in sea-
sonal S/P ratios. This algorithm identifies significant regime
shifts around the middle of the 1990s, primarily during the
summer months. The timing of the shift in region 1 (1996/97)
is about 3 years later than the timing of the shifts in the other
three regions (1993/94). More recent regime shifts are also de-
tected in the simulations for some winter months, when the
S/P ratio is typically high and the hydroclimate is relatively less
sensitive to climate change. This implies that climatic warming

FIG. 5. (a)–(d) Changes in S/P ratio (units: %) by 3-month seasonal mean over regions 1 to 4,
respectively, during 1950–2014. Anomalies are calculated relative to the mean for the whole pe-
riod. Black crosses denote potential regime shifts detected using the changepoint identification
algorithm. Linear trends (units: % decade21) for each season are shown at the rightmost edge of
each panel. Solid (open) circles indicate trends that are statistically significant (insignificant) at
the 95% confidence level. Positive (negative) trends are circled in green (gray). Seasonal means
are calculated for all overlapping periods of three consecutive calendar months.
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can exert an effect on these remote mountainous regions even
during the cold season, and that the tipping point for such a shift
may be imminent if it has not already arrived.

We replicate our analysis using annual mean S/P ratios in
500-m elevation bins to highlight how the annual trends differ
as a function of surface elevation in each subregion (Fig. 6).
Trends in S/P ratios are uniformly negative and statistically
significant across all elevation bins in the Tien Shan and
Karakoram regions. However, positive trends are found at
low elevations (below 2500 m) in the northern and southern
Tibetan Plateau domains. Although insignificant, the positive
trend even extends upward into 3000–3500-m bin in the south-
ern Tibetan Plateau. Despite similar elevations, different S/P
ratio trends are simulated across the four subregions. The de-
creasing trend in S/P ratios is smaller in the Karakoram region
than in the other three regions at altitudes above 3500 m,
which may again help explain the unique Karakoram anom-
aly. Application of the climate changepoint detection algo-
rithm again identifies transition years around the mid-1990s,
as also shown in Fig. 5. Analyses performed on time series of
simulated surface air temperature yield similar results (figures
not shown). This is consistent with the prior understanding

that the S/P ratio is quite sensitive to changes in temperature
(Huntington et al. 2004).

d. Attribution analysis of changes in S/P ratios

The significant decreasing trends in S/P ratios call for careful
investigation of the factors that could contribute to these
changes. By definition, changes in S/P ratios could result from
changes in snowfall, changes in total precipitation, or some
combination of the two. Based on Eq. (2), the S/P ratio trend is
determined by the relative magnitude of trends in the logarithm
of snowfall (lnS) and the logarithm of total precipitation (lnP).

As shown in Fig. 7, we test temporal trends in the loga-
rithms of both total precipitation and snowfall for each month
to understand the simulated trends in S/P ratio. For region 1
(Fig. 7a), the trend in total precipitation is weak throughout the
year but a strong reduction in snowfall, especially during warm
season months, leads to a significant decrease in the S/P ratio. A
similar situation is found for the southern Tibetan Plateau, except
that reductions in snowfall are statistically ignificant through more
of the year (Fig. 7d). For regions 2 and 3, reductions in snowfall
are coupled with weak positive trends in total precipitation in
several months, amplifying decreases in S/P ratios. We therefore

FIG. 6. As in Fig. 5, but for changes in the S/P ratio binned by elevation. Anomalies are calcu-
lated on an annual basis in 500-m elevation ranges between 2000 and 5000 m above mean
sea level. Gray shading in (a) denotes elevation ranges that are not represented in region 1.
Note that the color scale differs from that in Fig. 5.
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conclude that, throughout the four subregions, decreases in S/P
ratios during summertime are dominated by decreases in snowfall
amplified in some cases by increases in total precipitation. The lat-
ter contribution appears to be more prevalent during the shoulder
months (aroundMay and September). Although it does not affect
the main conclusion, it is worth noting that the relationship indi-
cated by Eq. (2) is not always satisfied in Fig. 7, especially when
the trends are small. This might be related to our use of the
Theil–Sen estimator for linear trend calculations, in which trends
are estimated as the median slope between all paired values
rather than through least squares minimization.

e. Relationships between S/P ratios and surface air
temperatures

A decrease in the S/P ratio is a good indicator of a warming
climate. To further probe the relationship between the S/P

ratio and surface air temperature in HMA, we apply Eq. (3)
to fit the relationships between S/P ratios and surface air tem-
peratures over all four subregions (Fig. 8). Overall, the logistic
relationship provides a good fit between these two variables
with mean absolute fitting errors (s) smaller than 0.05 except
for southern Tibetan Plateau (s = 0.06). During winter months,
temperatures are usually well below the freezing point so that
small changes in temperature are unlikely to result in large
shifts from snowfall to rainfall. As the cold season transitions to
the warm season, small changes in temperature can lead to
large reductions in the S/P ratio. The scatter points are concen-
trated along the fitted curve during summer and winter months;
however, the points often diverge substantially from the fitted
curve during the shoulder months (spring and fall). This diver-
gence from the fitted curve is especially pronounced in region 4.
Over this region, the S/P ratio in the fall is about 20% smaller

FIG. 7. (a)–(d) Linear trends in snowfall (yellow bars; units: mm day21 10 yr21), total precipi-
tation (green bars; units: mm day21 decade21), and the S/P ratio (red bars; units: % 10 yr21) by
3-month seasonal mean for regions 1 to 4, respectively. Snowfall and total precipitation are plot-
ted using the left y axis, while the S/P ratio is plotted using the right y axis. Colored triangles indi-
cate linear trends that are statistically significant at the 95% confidence level.
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than that in the spring given the same value of surface air tem-
perature. This may reflect the lingering influence of the Indian
summer monsoon during fall as well as the associated meteoro-
logical conditions, and requires further investigation.

Based on the fitting constants, we can calculate the thresh-
old value of surface air temperature for which the expected
value of the S/P ratio is equal to 50% (Taf�0:5). This is a useful
metric for defining the partitioning of precipitation phase as
highlighted by Jennings et al. (2018) and references therein.
Precipitation is equally likely to fall as rain or snow at this
temperature, while it is primarily in the form of rain for tem-
peratures warmer than this threshold and in the form of snow
for temperatures colder than this threshold. On the monthly

scale, the mean temperature thresholds for the four subre-
gions are 6.18C (region 1), 6.08C (region 2), 7.98C (region 3),
and 5.78C (region 4). Our results are consistent with those of
Jennings et al. (2018), who suggested that Taf�0:5 is larger than
4.58C (their Figs. 1 and 3) over HMA based on both precipita-
tion events recorded in station observations at subdaily time
scales and their logistic regression model. Our overestimation
of Taf�0:5 as derived from the data in Fig. 8 could be related to
our use of monthly mean data in this study or the presence of
systematic biases toward snowfall in this region based on the
C192AM4 model. We have further calculated the fitting con-
stants a and b and the temperature threshold Taf�0:5 for each
model grid point (see supplemental Fig. S2). Larger values of

FIG. 8. (a)–(d) Scatterplots of relationships between S/P ratios and surface air temperatures over regions 1 to 4, re-
spectively, during 1950–2014. Each cross represents a pair of monthly mean values as indicated by the colors in the
key. Black dashed lines show fits to Eq. (3). The fitting constants a and b and the mean absolute fitting error s are
listed in the upper-right corner of each panel.
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the temperature threshold are found at higher elevations, which
is consistent with the conclusion of Jennings et al. (2018) that
Taf�0:5 is larger at higher elevations in continental regions.
But we must take these results with caution: the relation-
ship between the S/P ratio and surface temperature could
be totally different if higher temporal frequency data are
used. Consequently, the value of Taf�0:5 could be substan-
tially different. In fact, despite a similar spatial distribu-
tion, the simulated Taf�0:5 is considerably overestimated
over HMA compared to the results based on precipitation
events at subdaily time scales (Jennings et al. 2018; our sup-
plemental Fig. S2).

f. Attribution analysis of rainfall

The regime shifts in S/P ratios identified in section 3c and
the attribution analysis in section 3d indicate that C192AM4
simulates increased rainfall over HMA as climate warms.
However, it remains unclear whether this increased rainfall
should be attributed to changes in temperature (i.e., transfor-
mation of snowfall into rainfall associated with the increased

occurrence of temperatures above the freezing point) or
changes in the large-scale circulation (i.e., an increase in total
precipitation due to increased moisture flux convergence). We
explore this question by examining the 15-yr periods before
and after the approximate transition year identified using the
changepoint algorithm in section 3c. The first period (period I)
spans 1976–90 while the second (period II) spans 2000–14. The
selection of these two periods is justified that they are in two
S/P ratio regimes and their differences are robust. The main
results change slightly if we use a longer period or switch to
another 15-yr period (figures not shown).

We calculate differences in total precipitation, snowfall,
rainfall, and S/P ratios between these two periods, respec-
tively. As shown in Fig. 9, differences in total precipitation be-
tween these two periods are insignificant outside of a few
isolated regions. By contrast, simulated rainfall is significantly
larger during the second period, while snowfall decreased
over almost the entire HMA domain. These changes lead to
significant declines in S/P ratios. We use Eq. (5) to assess the
relative contributions of local temperature changes and total
precipitation changes to the rainfall increase. The results

FIG. 9. Difference in (a) total precipitation (mm day21), (b) rainfall (mm day21), (c) snowfall (mm day21), and
(d) S/P ratio between 2000–14 and 1976–90. (e),(f) Contributions to changes in rainfall (units: %) by the local tempera-
ture change component (component I) and the large-scale circulation component (component II). Hatching in (a)–(d)
indicates changes that are statistically significant at the 95% confidence level based on the two-tailed Student’s t test.
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demonstrate that increases in rainfall are primarily from the
transformation of snowfall to rainfall over large parts of HMA
(component I; Fig. 9e), which is closely related to changes in
temperature. Substantial contributions by changes in total pre-
cipitation (component II; Fig. 9f) are mainly confined to the pe-
ripheral regions of HMA.

4. Conclusions and discussion

In this study, we use the GFDL C192AM4 model to investi-
gate the seasonality and interannual variability of S/P ratios
over High Mountain Asia. Comparison with available obser-
vations and outputs from a regional model indicates that
C192AM4 is able to reliably capture the spatial distributions
and seasonal variability of total precipitation, snowfall, and
surface air temperature. We identify significant decreasing
trends in annual-mean S/P ratios during 1950–2014 along with
distinct regime shifts from larger S/P ratios to smaller S/P ra-
tios in the mid-1990s. These tendencies are robust across a
range of seasons and elevations, but are most pronounced
during the warm season and at higher elevations. Moreover,
regime shifts are detected for the winter months during the
past decade, suggesting that climatic warming can significantly
impact cold season hydroclimate in these remote mountain-
ous regions and may already be doing so. Considering the sep-
arate changes in snowfall and total precipitation, decreases in
S/P ratios are simulated mainly during the warm season as
warming temperatures lead to more precipitation falling in
the form of rain rather than snow. Given the distinct effects of
snowfall and rainfall on water and energy fluxes at the land
surface, we further apply an attribution analysis to distinguish
the contributions of local temperature changes relative to
those of large-scale dynamics in the transition toward more
rainfall-dominated HMA. The results demonstrate that simu-
lated increases in rainfall over recent decades are primarily at-
tributable to the transformation of snowfall to rainfall as
temperature warms, although the large-scale dynamical com-
ponent is more prominent over the peripheral regions of
HMA. We further assess links between S/P ratios and surface
air temperatures by fitting the model-simulated monthly
means to a logistic relationship. This relationship allows for
the calculation of the threshold temperature at which the S/P
ratio equals 50%, and reveals that this temperature threshold
generally increases with increasing elevation.

This study provides an extensive evaluation of changes in S/P
ratios over HMA and the mechanisms behind these changes.
The results have substantial socioeconomic implications for wa-
ter management as climate warms. A greater portion of precipi-
tation falling as rainfall could amplify the influence of increased
melting rates in intensifying the risk of flooding downstream of
the natural reservoirs in HMA. Earlier runoff during springtime
will also complicate the management of reservoirs, perhaps re-
quiring summertime water storage for agricultural irrigation to
be sacrificed for springtime flood control.

Although many of the key characteristics of precipitation,
such as precipitation amount, have been extensively studied
under the context of climate change, much less attention has
been paid to changes in the phase of precipitation. This study

thus helps complement ongoing research into the hydrocli-
mate of HMA, which remains limited by a lack of reliable
long-term observations with adequate spatial coverage. Inac-
curate partitioning of precipitation into its liquid and solid
phases leads directly to significant biases in key hydrological
variables, including soil moisture, snow depth, snow cover,
and the timing of spring melt, among others. These biases in
turn cause errors in estimates of river runoff, land surface al-
bedo, and land–atmosphere energy exchange. Quantification
of changes in S/P ratios relative to their historical values is
thus essential for a more accurate and confident assessment of
the hydroclimatic response to warming over HMA, both in
the present day and in future projections.

Finally, it is worth noting a few caveats of the present study.
First, the use of monthly data is not able to represent the vari-
ability of precipitation on shorter time scale. Given the irregu-
larity of precipitation events over HMA (Maussion et al.
2014), one should be aware that the relationship between the
S/P ratio and surface temperature as well as the temperature
threshold could be different if higher-frequency datasets are
used. Second, there are large uncertainties in observations
over HMA. Although the APHRODITE product makes use
of the most available station records, its quality is highly de-
pendent on the amount of input data, which varies largely in
space and time over HMA. More accurate observations over
the inner and western HMA as well as elevated mountainous
areas are needed to provide a coherent picture of changes in
the S/P ratio. In addition, the model also has limited ability to
simulate convective processes associated with short-duration
precipitation events. For example, the model tends to overpro-
duce the mesoscale convective systems (an important rain-bearer
over HMA) over southeastern HMA while underestimat-
ing them over the Tien Shan (Zhao 2022). This could affect
the partitioning between rainfall and snowfall considering
that the snowfall in the model is calculated based on an inte-
gral measure of lower-tropospheric temperature. The rain–
snow partitioning could also be sensitive to the microphysics
scheme used in the model as demonstrated by Guo et al.
(2021). In this sense, our results would need to be further vali-
dated using different models and/or microphysics schemes.
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